专题5 三角恒等变换

一、刷难关

1.设 $ \alpha \in [\dfrac{\mathrm{\pi }}{4},\dfrac{\mathrm{\pi }}{2}] $ , $ \beta \in [\dfrac{\mathrm{\pi }}{4},\dfrac{\mathrm{\pi }}{2}] $ ,且 $ \sin \alpha + \cos \alpha =\sqrt{2} \cos \beta $ ,则(      )

A. $ \alpha +\beta =\dfrac{\mathrm{\pi }}{4} $

B. $ \alpha -\beta =\dfrac{\mathrm{\pi }}{4} $

C. $ \alpha +\beta =\dfrac{\mathrm{\pi }}{2} $

D. $ \alpha -\beta =-\dfrac{\mathrm{\pi }}{4} $

答案:B
解析:

因为 $ \sin \alpha + \cos \alpha =\sqrt{2} \sin (\alpha +\dfrac{\mathrm{\pi }}{4})=\sqrt{2} \cos \beta $ ,所以 $ \sin (\alpha +\dfrac{\mathrm{\pi }}{4})= \cos \beta = \sin (\dfrac{\mathrm{\pi }}{2}-\beta ) $ .

因为 $ \alpha \in [\dfrac{\mathrm{\pi }}{4},\dfrac{\mathrm{\pi }}{2}] $ , $ \beta \in [\dfrac{\mathrm{\pi }}{4},\dfrac{\mathrm{\pi }}{2}] $ ,所以 $ \alpha +\dfrac{\mathrm{\pi }}{4}\in [\dfrac{\mathrm{\pi }}{2},\dfrac{3\mathrm{\pi }}{4}] $ , $ \dfrac{\mathrm{\pi }}{2}-\beta \in [0,\dfrac{\mathrm{\pi }}{4}] $ ,

所以 $ \alpha +\dfrac{\mathrm{\pi }}{4}+\dfrac{\mathrm{\pi }}{2}-\beta =\mathrm{\pi } $ ,则 $ \alpha -\beta =\dfrac{\mathrm{\pi }}{4} $ .故选 $ \mathrm{B} $ .


2.(多选)下列四个等式中正确的有(      )(多选)

A. $ \cos {28}^{\circ } \cos {32}^{\circ }- \cos {62}^{\circ } \sin {32}^{\circ }=\dfrac{1}{2} $

B. $ \sin {105}^{\circ } \cos {75}^{\circ }=\dfrac{\sqrt{3}}{4} $

C. $ \dfrac{1+ \tan {15}^{\circ }}{1- \tan {15}^{\circ }}=\sqrt{3} $

D. $ \sin {50}^{\circ }(1+\sqrt{3} \tan {10}^{\circ })=1 $

答案:ACD
解析:

对于 $ \mathrm{A} $ , $ \cos {28}^{\circ } \cos {32}^{\circ }- \cos {62}^{\circ } \sin {32}^{\circ }= \cos {28}^{\circ } \cos {32}^{\circ }- \sin {28}^{\circ } \sin {32}^{\circ }= \cos {60}^{\circ }=\dfrac{1}{2} $ ,故 $ \mathrm{A} $ 正确;

对于 $ \mathrm{B} $ , $ \sin {105}^{\circ } \cos {75}^{\circ }= \sin {75}^{\circ } \cos {75}^{\circ }=\dfrac{1}{2} \sin {150}^{\circ }=\dfrac{1}{4} $ ,故 $ \mathrm{B} $ 错误;

对于 $ \mathrm{C} $ , $ \dfrac{1+ \tan {15}^{\circ }}{1- \tan {15}^{\circ }}=\dfrac{ \tan {45}^{\circ }+ \tan {15}^{\circ }}{1- \tan {45}^{\circ } \tan {15}^{\circ }}= \tan {60}^{\circ }=\sqrt{3} $ ,故 $ \mathrm{C} $ 正确;

对于 $ \mathrm{D} $ , $ \sin {50}^{\circ }(1+\sqrt{3} \tan {10}^{\circ }) $

$ = \sin {50}^{\circ }(1+\dfrac{\sqrt{3} \sin {10}^{\circ }}{ \cos {10}^{\circ }}) $

$ =\dfrac{ \sin {50}^{\circ }(\sqrt{3} \sin {10}^{\circ }+ \cos {10}^{\circ })}{ \cos {10}^{\circ }} $

$ =\dfrac{2 \sin {50}^{\circ }(\dfrac{\sqrt{3}}{2} \sin {10}^{\circ }+\dfrac{1}{2} \cos {10}^{\circ })}{ \cos {10}^{\circ }} $

$ =\dfrac{2 \cos {40}^{\circ } \sin {40}^{\circ }}{ \cos {10}^{\circ }}=\dfrac{ \sin {80}^{\circ }}{ \sin {80}^{\circ }}=1 $ ,故 $ \mathrm{D} $ 正确.故选 $ \mathrm{A}\mathrm{C}\mathrm{D} $ .


3.若 $ 0 < \alpha < \dfrac{\mathrm{\pi }}{2} $ , $ 0 < \beta < \dfrac{\mathrm{\pi }}{2} $ , $ \cos (\dfrac{\mathrm{\pi }}{6}+\alpha )=-\dfrac{\sqrt{10}}{10} $ , $ \sin (\dfrac{\mathrm{\pi }}{3}-\beta )=\dfrac{\sqrt{5}}{5} $ ,则 $ \alpha -\beta = $       .

答案:

$ \dfrac{\mathrm{\pi }}{4} $

解析:

$ \because 0 < \alpha < \dfrac{\mathrm{\pi }}{2} $ , $ \therefore \dfrac{\mathrm{\pi }}{6} < \dfrac{\mathrm{\pi }}{6}+\alpha < \dfrac{2\mathrm{\pi }}{3} $ ,

故由 $ \cos (\dfrac{\mathrm{\pi }}{6}+\alpha )=-\dfrac{\sqrt{10}}{10} $ ,

得 $ \sin (\dfrac{\mathrm{\pi }}{6}+\alpha )=\dfrac{3\sqrt{10}}{10} $ .

$ \because 0 < \beta < \dfrac{\mathrm{\pi }}{2} $ , $ \therefore -\dfrac{\mathrm{\pi }}{2} < -\beta < 0 $ , $ \therefore -\dfrac{\mathrm{\pi }}{6} < \dfrac{\mathrm{\pi }}{3}-\beta < \dfrac{\mathrm{\pi }}{3} $ .

又 $ \because \sin (\dfrac{\mathrm{\pi }}{3}-\beta )=\dfrac{\sqrt{5}}{5} $ ,

$ \therefore \cos (\dfrac{\mathrm{\pi }}{3}-\beta )=\dfrac{2\sqrt{5}}{5} $ .

则 $ \sin (\alpha -\beta )=- \cos [(\dfrac{\mathrm{\pi }}{6}+\alpha )+(\dfrac{\mathrm{\pi }}{3}-\beta )] $

$ =- \cos (\dfrac{\mathrm{\pi }}{6}+\alpha ) \cos (\dfrac{\mathrm{\pi }}{3}-\beta )+ \sin (\dfrac{\mathrm{\pi }}{6}+\alpha ) \sin (\dfrac{\mathrm{\pi }}{3}-\beta ) $

$ =\dfrac{\sqrt{10}}{10}×\dfrac{2\sqrt{5}}{5}+\dfrac{3\sqrt{10}}{10}×\dfrac{\sqrt{5}}{5}=\dfrac{5\sqrt{50}}{50}=\dfrac{\sqrt{2}}{2} $ .

又 $ -\dfrac{\mathrm{\pi }}{2} < \alpha -\beta < \dfrac{\mathrm{\pi }}{2} $ ,所以 $ \alpha -\beta =\dfrac{\mathrm{\pi }}{4} $ .


4.已知 $ \dfrac{\mathrm{\pi }}{4} < \alpha < \dfrac{3\mathrm{\pi }}{4} $ , $ 0 < \beta < \dfrac{\mathrm{\pi }}{4} $ , $ \sin (\alpha -\dfrac{\mathrm{\pi }}{4})=\dfrac{2\sqrt{2}}{3} $ , $ \cos (\alpha +\beta )=-\dfrac{3}{5} $ ,求 $ \sin (\alpha +\dfrac{5\mathrm{\pi }}{4}) $ 和 $ \cos (\beta +\dfrac{\mathrm{\pi }}{4}) $ 的值.

答案:

【解】 $ \because \dfrac{\mathrm{\pi }}{4} < \alpha < \dfrac{3\mathrm{\pi }}{4} $ ,

$ \therefore \alpha -\dfrac{\mathrm{\pi }}{4}\in (0,\dfrac{\mathrm{\pi }}{2}) $ .

又 $ { \cos }^{2}(\alpha -\dfrac{\mathrm{\pi }}{4})+{ \sin }^{2}(\alpha -\dfrac{\mathrm{\pi }}{4})=1 $ ,

$ \sin (\alpha -\dfrac{\mathrm{\pi }}{4})=\dfrac{2\sqrt{2}}{3} $ ,

$ \therefore \cos (\alpha -\dfrac{\mathrm{\pi }}{4})=\dfrac{1}{3} $ ,

$ \therefore \sin (\alpha +\dfrac{5\mathrm{\pi }}{4})= \sin [\mathrm{\pi }+(\alpha +\dfrac{\mathrm{\pi }}{4})]=- \sin (\alpha +\dfrac{\mathrm{\pi }}{4})=- \sin [(\alpha -\dfrac{\mathrm{\pi }}{4})+\dfrac{\mathrm{\pi }}{2}]=- \cos (\alpha -\dfrac{\mathrm{\pi }}{4})=-\dfrac{1}{3} $ .

$ \because \dfrac{\mathrm{\pi }}{4} < \alpha < \dfrac{3\mathrm{\pi }}{4} $ , $ 0 < \beta < \dfrac{\mathrm{\pi }}{4} $ ,

$ \therefore \alpha +\beta \in (\dfrac{\mathrm{\pi }}{4},\mathrm{\pi }) $ .又 $ { \sin }^{2}(\alpha +\beta )+{ \cos }^{2}(\alpha +\beta )=1 $ , $ \cos (\alpha +\beta )=-\dfrac{3}{5} $ ,

$ \therefore \sin (\alpha +\beta )=\dfrac{4}{5} $ ,

$ \therefore \cos (\beta +\dfrac{\mathrm{\pi }}{4})= \cos [(\alpha +\beta )-(\alpha -\dfrac{\mathrm{\pi }}{4})]= $

$ \cos (\alpha +\beta ) \cos (\alpha -\dfrac{\mathrm{\pi }}{4})+ \sin (\alpha +\beta )\cdot \sin (\alpha -\dfrac{\mathrm{\pi }}{4})=-\dfrac{3}{5}×\dfrac{1}{3}+\dfrac{4}{5}×\dfrac{2\sqrt{2}}{3}=\dfrac{8\sqrt{2}-3}{15} $ .

解析:

5.已知 $ \sin (\alpha +\beta )=\dfrac{1}{2} $ , $ \tan \alpha =5 \tan \beta $ ,则 $ \cos (2\alpha -2\beta )= $ (      )

A. $ \dfrac{1}{3} $

B. $ \dfrac{3}{10} $

C. $ \dfrac{7}{9} $

D. $ \dfrac{41}{50} $

答案:C
解析:

由题意得, $ \sin (\alpha +\beta )= \sin \alpha \cos \beta + \cos \alpha \sin \beta =\dfrac{1}{2}\mathrm{①} $ .

由 $ \tan \alpha =5 \tan \beta $ ,得 $ \dfrac{ \sin \alpha }{ \cos \alpha }=5\cdot \dfrac{ \sin \beta }{ \cos \beta } $ ,

则 $ \sin \alpha \cos \beta =5 \cos \alpha \sin \beta \mathrm{②} $ .

联立①②,得 $ \cos \alpha \sin \beta =\dfrac{1}{12} $ ,

所以 $ \sin (\alpha -\beta )= \sin \alpha \cos \beta - \cos \alpha \sin \beta =4 \cos \alpha \sin \beta =\dfrac{1}{3} $ ,

所以 $ \cos (2\alpha -2\beta )=1-2{ \sin }^{2}(\alpha -\beta )=1-2×\dfrac{1}{9}=\dfrac{7}{9} $ .故选 $ \mathrm{C} $ .


6.若 $ \cos (\mathrm{x}-{20}^{\circ })=2\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{x}\mathrm{s}\mathrm{i}\mathrm{n}{10}^{\circ } $ ,则 $ \mathrm{t}\mathrm{a}\mathrm{n}\mathrm{x}= $       .

答案:

$ -\sqrt{3} $

解析:

由题可得 $ \cos x \cos {20}^{\circ }+ \sin x \sin {20}^{\circ }=2 \cos x \sin {10}^{\circ } $ ,易知 $ \cos x\ne 0 $ ,

将等式两边同时除以 $ \cos x $ 可得 $ \cos {20}^{\circ }+ \tan x \sin {20}^{\circ }=2 \sin {10}^{\circ } $ ,

所以 $ \tan x=\dfrac{2 \sin {10}^{\circ }- \cos {20}^{\circ }}{ \sin {20}^{\circ }} $

$ =\dfrac{2 \sin ({30}^{\circ }-{20}^{\circ })- \cos {20}^{\circ }}{ \sin {20}^{\circ }} $

$ =\dfrac{2 \sin {30}^{\circ } \cos {20}^{\circ }-2 \cos {30}^{\circ } \sin {20}^{\circ }- \cos {20}^{\circ }}{ \sin {20}^{\circ }} $

$ =-2 \cos {30}^{\circ }=-\sqrt{3} $ .


7.若 $ \cos 2\alpha =\dfrac{3}{5} $ ,则 $ { \sin }^{4}\alpha +{ \cos }^{4}\alpha = $ (      )

A. $ -\dfrac{17}{25} $

B. $ \dfrac{17}{25} $

C. $ -\dfrac{8}{25} $

D. $ \dfrac{8}{25} $

答案:B
解析:

因为 $ \cos 2\alpha =\dfrac{3}{5} $ ,所以 $ { \cos }^{2}\alpha =\dfrac{1+ \cos 2\alpha }{2}=\dfrac{1}{2}(1+\dfrac{3}{5})=\dfrac{4}{5} $ ,

$ { \sin }^{2}\alpha =\dfrac{1- \cos 2\alpha }{2}=\dfrac{1}{2}(1-\dfrac{3}{5})=\dfrac{1}{5} $ ,

所以 $ { \sin }^{4}\alpha +{ \cos }^{4}\alpha ={\left(\dfrac{1}{5}\right) ^ {2}}+{\left(\dfrac{4}{5}\right) ^ {2}}=\dfrac{17}{25} $ .故选 $ \mathrm{B} $ .


8.已知 $ \sin \alpha =-\dfrac{12}{13} $ , $ \alpha \in (\mathrm{\pi },\dfrac{3\mathrm{\pi }}{2}) $ ,则 $ \tan \dfrac{\alpha }{2}= $       .

答案:

$ -\dfrac{3}{2} $

解析:

因为 $ \sin \alpha =-\dfrac{12}{13} $ , $ \alpha \in (\mathrm{\pi },\dfrac{3\mathrm{\pi }}{2}) $ ,

所以 $ \cos \alpha =-\dfrac{5}{13} $ .

因为 $ \alpha \in (\mathrm{\pi },\dfrac{3\mathrm{\pi }}{2}) $ ,

所以 $ \dfrac{\alpha }{2}\in (\dfrac{\mathrm{\pi }}{2},\dfrac{3\mathrm{\pi }}{4}) $ ,

所以 $ \tan \dfrac{\alpha }{2} < 0 $ ,

所以 $ \tan \dfrac{\alpha }{2}=-\sqrt{\dfrac{1- \cos \alpha }{1+ \cos \alpha }}=-\dfrac{3}{2} $ .


9.已知 $ f(x)={ \sin }^{4}x $ .

(1) 记 $ g(x)=f(x)+f(\dfrac{\mathrm{\pi }}{2}-x) $ ,求 $ g(x) $ 在 $ [\dfrac{\mathrm{\pi }}{6},\dfrac{3\mathrm{\pi }}{8}] $ 上的最大值和最小值;

(2) 求 $ f(\dfrac{\mathrm{\pi }}{180})+f(\dfrac{2\mathrm{\pi }}{180})+f(\dfrac{3\mathrm{\pi }}{180})+\cdots +f(\dfrac{88\mathrm{\pi }}{180})+f(\dfrac{89\mathrm{\pi }}{180}) $ 的值.

答案:

(1) 【解】由题知 $ g(x)={ \sin }^{4}x+{ \cos }^{4}x={\left({ \sin }^{2}x+{ \cos }^{2}x\right) ^ {2}}-2{ \sin }^{2}x{ \cos }^{2}x=1-\dfrac{1}{2}{ \sin }^{2}2x $ .

因为 $ x\in [\dfrac{\mathrm{\pi }}{6},\dfrac{3\mathrm{\pi }}{8}] $ ,所以 $ 2x\in [\dfrac{\mathrm{\pi }}{3},\dfrac{3\mathrm{\pi }}{4}] $ ,故 $ \sin 2x\in [\dfrac{\sqrt{2}}{2} $ , $ 1 ] $ ,

从而 $ \dfrac{1}{2}\leqslant 1-\dfrac{1}{2}{ \sin }^{2}2x\leqslant \dfrac{3}{4} $ ,

即 $ g(x)\in [\dfrac{1}{2},\dfrac{3}{4}] $ ,

所以 $ g(x) $ 在 $ [\dfrac{\mathrm{\pi }}{6},\dfrac{3\mathrm{\pi }}{8}] $ 上的最大值为 $ \dfrac{3}{4} $ ,最小值为 $ \dfrac{1}{2} $ .

(2) 【解】 $ f(\dfrac{\mathrm{\pi }}{180})+f(\dfrac{2\mathrm{\pi }}{180})+f(\dfrac{3\mathrm{\pi }}{180})+\cdots +f(\dfrac{88\mathrm{\pi }}{180})+f(\dfrac{89\mathrm{\pi }}{180}) $

$ =g(\dfrac{\mathrm{\pi }}{180})+g(\dfrac{2\mathrm{\pi }}{180})+g(\dfrac{3\mathrm{\pi }}{180})+\cdots +g(\dfrac{44\mathrm{\pi }}{180})+{ \sin }^{4}\frac{45\mathrm{\pi }}{180} $

$ =44-\dfrac{1}{2}({ \sin }^{2}\frac{2\mathrm{\pi }}{180}+{ \sin }^{2}\frac{4\mathrm{\pi }}{180}+{ \sin }^{2}\frac{6\mathrm{\pi }}{180}+\cdots +{ \sin }^{2}\frac{88\mathrm{\pi }}{180})+{\left(\dfrac{\sqrt{2}}{2}\right) ^ {4}} $

$ =44-\dfrac{1}{2}×22+\dfrac{1}{4} $

$ =\dfrac{133}{4} $ .

解析: